extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(S3xC8) = C16.12D6 | φ: S3xC8/C3:C8 → C2 ⊆ Aut C22 | 96 | 4 | C2^2.1(S3xC8) | 192,466 |
C22.2(S3xC8) = D12.4C8 | φ: S3xC8/C24 → C2 ⊆ Aut C22 | 96 | 2 | C2^2.2(S3xC8) | 192,460 |
C22.3(S3xC8) = (C22xS3):C8 | φ: S3xC8/C4xS3 → C2 ⊆ Aut C22 | 48 | | C2^2.3(S3xC8) | 192,27 |
C22.4(S3xC8) = (C2xDic3):C8 | φ: S3xC8/C4xS3 → C2 ⊆ Aut C22 | 96 | | C2^2.4(S3xC8) | 192,28 |
C22.5(S3xC8) = C8.25D12 | φ: S3xC8/C4xS3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.5(S3xC8) | 192,73 |
C22.6(S3xC8) = Dic3.5M4(2) | φ: S3xC8/C4xS3 → C2 ⊆ Aut C22 | 96 | | C2^2.6(S3xC8) | 192,277 |
C22.7(S3xC8) = S3xM5(2) | φ: S3xC8/C4xS3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.7(S3xC8) | 192,465 |
C22.8(S3xC8) = Dic3xC16 | central extension (φ=1) | 192 | | C2^2.8(S3xC8) | 192,59 |
C22.9(S3xC8) = Dic3:C16 | central extension (φ=1) | 192 | | C2^2.9(S3xC8) | 192,60 |
C22.10(S3xC8) = C48:10C4 | central extension (φ=1) | 192 | | C2^2.10(S3xC8) | 192,61 |
C22.11(S3xC8) = D6:C16 | central extension (φ=1) | 96 | | C2^2.11(S3xC8) | 192,66 |
C22.12(S3xC8) = (C2xC24):5C4 | central extension (φ=1) | 192 | | C2^2.12(S3xC8) | 192,109 |
C22.13(S3xC8) = S3xC2xC16 | central extension (φ=1) | 96 | | C2^2.13(S3xC8) | 192,458 |
C22.14(S3xC8) = C2xD6.C8 | central extension (φ=1) | 96 | | C2^2.14(S3xC8) | 192,459 |
C22.15(S3xC8) = Dic3xC2xC8 | central extension (φ=1) | 192 | | C2^2.15(S3xC8) | 192,657 |
C22.16(S3xC8) = C2xDic3:C8 | central extension (φ=1) | 192 | | C2^2.16(S3xC8) | 192,658 |
C22.17(S3xC8) = C2xD6:C8 | central extension (φ=1) | 96 | | C2^2.17(S3xC8) | 192,667 |