Extensions 1→N→G→Q→1 with N=C22 and Q=S3xC8

Direct product G=NxQ with N=C22 and Q=S3xC8
dρLabelID
S3xC22xC896S3xC2^2xC8192,1295

Semidirect products G=N:Q with N=C22 and Q=S3xC8
extensionφ:Q→Aut NdρLabelID
C22:(S3xC8) = C8xS4φ: S3xC8/C8S3 ⊆ Aut C22243C2^2:(S3xC8)192,958
C22:2(S3xC8) = C3:D4:C8φ: S3xC8/C3:C8C2 ⊆ Aut C2296C2^2:2(S3xC8)192,284
C22:3(S3xC8) = C8xC3:D4φ: S3xC8/C24C2 ⊆ Aut C2296C2^2:3(S3xC8)192,668
C22:4(S3xC8) = S3xC22:C8φ: S3xC8/C4xS3C2 ⊆ Aut C2248C2^2:4(S3xC8)192,283

Non-split extensions G=N.Q with N=C22 and Q=S3xC8
extensionφ:Q→Aut NdρLabelID
C22.1(S3xC8) = C16.12D6φ: S3xC8/C3:C8C2 ⊆ Aut C22964C2^2.1(S3xC8)192,466
C22.2(S3xC8) = D12.4C8φ: S3xC8/C24C2 ⊆ Aut C22962C2^2.2(S3xC8)192,460
C22.3(S3xC8) = (C22xS3):C8φ: S3xC8/C4xS3C2 ⊆ Aut C2248C2^2.3(S3xC8)192,27
C22.4(S3xC8) = (C2xDic3):C8φ: S3xC8/C4xS3C2 ⊆ Aut C2296C2^2.4(S3xC8)192,28
C22.5(S3xC8) = C8.25D12φ: S3xC8/C4xS3C2 ⊆ Aut C22484C2^2.5(S3xC8)192,73
C22.6(S3xC8) = Dic3.5M4(2)φ: S3xC8/C4xS3C2 ⊆ Aut C2296C2^2.6(S3xC8)192,277
C22.7(S3xC8) = S3xM5(2)φ: S3xC8/C4xS3C2 ⊆ Aut C22484C2^2.7(S3xC8)192,465
C22.8(S3xC8) = Dic3xC16central extension (φ=1)192C2^2.8(S3xC8)192,59
C22.9(S3xC8) = Dic3:C16central extension (φ=1)192C2^2.9(S3xC8)192,60
C22.10(S3xC8) = C48:10C4central extension (φ=1)192C2^2.10(S3xC8)192,61
C22.11(S3xC8) = D6:C16central extension (φ=1)96C2^2.11(S3xC8)192,66
C22.12(S3xC8) = (C2xC24):5C4central extension (φ=1)192C2^2.12(S3xC8)192,109
C22.13(S3xC8) = S3xC2xC16central extension (φ=1)96C2^2.13(S3xC8)192,458
C22.14(S3xC8) = C2xD6.C8central extension (φ=1)96C2^2.14(S3xC8)192,459
C22.15(S3xC8) = Dic3xC2xC8central extension (φ=1)192C2^2.15(S3xC8)192,657
C22.16(S3xC8) = C2xDic3:C8central extension (φ=1)192C2^2.16(S3xC8)192,658
C22.17(S3xC8) = C2xD6:C8central extension (φ=1)96C2^2.17(S3xC8)192,667

׿
x
:
Z
F
o
wr
Q
<